当前位置:首页 >休闲 >实现分布式 Kv—2 Raft Leader 选举 各个节点的实现式数据一致性

实现分布式 Kv—2 Raft Leader 选举 各个节点的实现式数据一致性

2024-06-08 15:38:34 [百科] 来源:避面尹邢网

实现分布式 Kv—2 Raft Leader 选举

作者: roseduan 开发 前端 分布式 raft 是实现式一个分布式一致性算法,主要保证的分布是在分布式系统中,各个节点的实现式数据一致性。raft 算法比较复杂,分布它所解决的实现式分布式一致性问题本来就是一个比较棘手的问题。

[[441163]]

从本篇文章起,分布就要基于 raft 构建分布式 kv 了。实现式

实现分布式 Kv—2 Raft Leader 选举 各个节点的实现式数据一致性

raft 是分布一个分布式一致性算法,主要保证的实现式是在分布式系统中,各个节点的分布数据一致性。raft 算法比较复杂,实现式因为它所解决的分布分布式一致性问题本来就是一个比较棘手的问题,raft 算法的实现式实现主要可以拆解为三个部分:

实现分布式 Kv—2 Raft Leader 选举 各个节点的实现式数据一致性

  • 领导选举
  • 日志复制
  • 安全性

如果不太熟悉 raft 算法,可以看下这个网站的分布动画展示:

实现分布式 Kv—2 Raft Leader 选举 各个节点的实现式数据一致性

http://thesecretlivesofdata.com/raft

非常形象的展示了 raft 算法面临的问题,以及 raft 算法解决问题的实现式基本过程。

当然,raft 算法的 paper 也值得参考:

https://github.com/maemual/raft-zh_cn

我在网上还找到了一个不错的 raft 算法的系列文章:

https://www.codedump.info/post/20180921-raft

https://blog.betacat.io/post/raft-implementation-in-etcd

看完了这些资料之后,应该就对 raft 算法有了一个大致的了解,然后就可以看看具体怎么实现。

这篇文章暂时只介绍第一个 Leader 选举问题,对应的是 TinyKV 中的 Project 2aa 部分。

在 raft 集群中,节点分为了三种状态:Follower(跟随者)、Candidate(候选者)、Leader(领导者),节点的初始状态是 Follower。

Follower 节点需要定期获取 Leader 的心跳信息来维持自己的状态。Follower 节点有一个超时时间(ElectionTimeout),在这段时间内,如果它没有收到来自 Leader 的心跳信息,那么它会认为集群中没有 Leader,然后便会发起选举。

选举的具体流程:

如上图,节点 A 的 Election Timeout 最先到达,因此它会将自己的状态变更为 Candidate,并且将任期号 Term 加 1(图中最开始的任期号是 0,加一之后变为 1),然后给自己投票,并且发送请求投票消息给 B 和 C 两个节点。

B、C 节点发现自己的任期号比 A 小,所以就会给 A 投同意票,A 节点收到回复之后,计算投票是否超过了节点数的一半,如果满足则成为 Leader。

以上阐述的是最理想的 Leader 选举的情况,严格来说 Candidate 节点发起选举后,需要一直保持状态直到以下情况之一发生:

  • 它自身赢得了选举
  • 其他的节点赢得了选举
  • 选举超时到来,没有节点成为 Leader

第一种情况,就是上面描述的选举流程,它自身发起选举,并且赢得了超过半数节点的投票,然后成为了 Leader。

第二种情况,如果选举的过程当中,有其他的节点成为 Candidate 并且赢得了选举,那么它收到新的 Leader 发来的 AppendEntry RPC 消息,并且如果新的 Leader 任期号比自身的更大,那么它会认为这个 Leader 是有效的,自身变更为 Follower。

第三种情况,对应的是节点在选举中没有输也没有赢,如果集群节点是偶数个,并且同时有两个节点发起选举,那么便可能会出现这种情况,这样的话选举便是无效的。当选举超时再次到来时,如果还是没有新的 Leader,那么 Candidate 会发起新的一轮选举。

具体到代码实现,首先,最开始的逻辑在 tick 函数中,这里会由外层进行调用,我们需要判断节点的 Election Timeout 是否到了,如果是的话,则需要发起选举。

  1. // tick advances the internal logical clock by a single tick. 
  2. func (r *Raft) tick() {  
  3.   // Your Code Here (2A). 
  4.   switch r.State {  
  5.   case StateLeader: 
  6.         // ... 
  7.   case StateFollower, StateCandidate: 
  8.     r.electionElapsed++ 
  9.     if r.electionElapsed >= r.electionTimeout {  
  10.       // 发起新的选举 
  11.       r.startElection() 
  12.     } 
  13.   } 

发起选举,自身变更为 Candidate,任期号 + 1,并且给自己投票。然后需要向其他节点发送 MsgRequestVote 类型的消息。

MsgRequestVote 消息需要包含当前节点最后一条日志的 Index 和 Term,方便 Follower 判断该节点的日志是不是最新的。

其他的 Follower 节点收到 MsgRequestVote 消息之后开始处理,处理时需要注意几个点:

  • 如果 msg 的任期号 Term 比自己的 Term 小,直接拒绝这个消息
  • 如果 msg 的 Term 比自己的大,则自己需要变更为 Follower(如果不是 Follower 的话),并更新 Term
  • 需要检查 msg 的任期号和 index 号,如果 msg 的日志不是最新的,拒绝这个消息

校验全部通过之后,Follower 节点就会投赞成票,然后发送 MsgRequestVoteResponse 消息给 Candidate 节点。

Candidate 节点收到 MsgRequestVoteResponse 消息之后,需要记下投票的结果,然后计算投票是否满足:

  • 如果拒绝票超过节点数的 1/2,那么竞选失败,Candidate 节点变为 Follower 状态
  • 如果赞成票超过节点数的 1/2,那么竞选成功

如果竞选成功,需要变更自己的状态为 Leader,然后向其他节点发送一个 MsgAppend 消息,附带一个空的数据 Entry,防止其他节点继续发起选举。

 

ps. 具体的代码实现可参考 etcd 的 raft,然后再基于此来自己手动实现 TinyKV 中的代码。

 

责任编辑:武晓燕 来源: roseduan写字的地方 分布式 Kv分布式 Kv

(责任编辑:娱乐)

    推荐文章
    热点阅读